Diastolic Function – Theory and Assessment

February 23, 2007 Joe M. Moody, Jr, MD UTHSCSA and STVAHCS

Diastole - Summary

- Relaxation
 - Active process
 - Measurable during isovolumic relaxation
 - Heart rate effects
- Passive ventricular properties
 - Geometry: wall thickness and radius
 - Histology: cellular composition, collagen
 - Extrinsic factors
- (Atrial systole atrial transport stepchild)

Diastolic function - Suction V_{ES} V_{EQ} (V_0) V_{ED} Pressure (mmHg) +40 0 Volume (ml) 80 -20

Gilbert JC et al. <u>Circ Res</u> 1989;<u>64</u>:828.

Adapted from Gilbert JC et al. <u>Circ Res</u> 1989;<u>64</u>:828.

Opie LH. Ch 19, "Mechanisms of Cardiac Contraction and Relaxation" Braunwald's Heart Disease, 7th ed. 2004.

Physiology of Diastole

- Diastole: traditionally, from S2 to S1
 - More specifically, onset is at maximal elastance, slightly before aortic valve closure (protodiastole)

Fig 1. Triple control of the contraction and relaxation phases of the cardiac cycle. The curve in the middle of the figure gives the time course of an isometric contraction of isolated cardiac muscle (see Fig 3) and is used as a reference to illustrate the time course of an entire cardiac cycle.

Physiology of Diastole

- Diastole: traditionally, from S2 to S1
 - More specifically, onset is at maximal elastance, slightly before aortic valve closure (protodiastole)

Physiology of Diastole

Diastole: traditionally, from S2 to S1

 More specifically, onset is at maximal elastance, slightly before aortic valve closure (protodiastole)

- Normal function: LV accepts adequate filling volume to maintain cardiac output at normal operating pressure
- Active diastole: Lusitropic function
- Passive diastole: mechanical properties

Relaxation Factors

- Cytosolic Ca++ must fall
- Viscoelastic properties of myocardium
- Phosphorylation of troponin I accelerates relaxation
- Systolic load accelerates relaxation

Opie LH. Ch 19, "Mechanisms of Cardiac Contraction and Relaxation" Braunwald's Heart Disease, 7th ed. 2004.

Relaxation Factors – (1)

- Cytosolic Ca++ must fall (1)
 - 10-fold, from 100 nM to 10 nM*
 - Requires ATP used by SERCA2a (sarcoendoplasmic reticulum Ca2+adenosine triphosphatase), the dominant cardiac isoform using 1 ATP for 2 Ca++ ions
 - SERCA2a constitutes ~90% of SR protein

*Petrashevskaya NN et al. <u>J Mol Cell Cardiol</u>. 2002;<u>34</u>:885. Braunwald's Heart Disease, 7th Ed. Opie LH. Ch 19, p. 464, 481.

Relaxation Factors – (2)

- Cytosolic Ca++ must fall (2)
 - SERCA2a is regulated by phosphorylation of phospholamban for reuptake of Ca++ into SR (dephosphorylated phospholamban is inhibitory**)
 - Phospholamban is phosphorylated at at least 2 sites
 - Ser-10 by PKC** (in vitro only)
 - Ser-16 β -adrenergic stimulation to cAMP to PKA**
 - Thr-17 Calcium ions and calmodulin-dependent protein kinase**

**Zhao W et al. <u>J Mol Cell Cardiol</u>. 2004;<u>37</u>:607 Braunwald's Heart Disease, 7th Ed. Opie LH. Ch 19, p. 464, 481.

Relaxation Factors – (3)

- Viscoelastic properties of myocardium
- Phosphorylation of troponin I accelerates relaxation
- Systolic load accelerates relaxation

**Zhao W et al. J Mol Cell Cardiol. 2004;37:607
*Petrashevskaya NN et al. J Mol Cell Cardiol. 2002;34:885.
Braunwald's Heart Disease, 7th Ed. Opie LH. Ch 19, p. 464, 481.

MacLennan DH et al. Nature Medicine 2003;4:566

Triad Junction of T-tubule and Sarcoplasmic Reticulum

Junction foot structures; cytoplasmic domains of Ryr Calsequestrin strands in sarcoplasmic reticulum terminal cisternae

T-tubule (DHPR, voltage-dependent Large Ca⁺⁺ channel)

Beard NA et al. Prog Biophys Mol Biol. 2004;85:33.

Calsequestrin and the RyR

Beard NA et al. Prog Biophys Mol Biol. 2004;85:33.

Opie LH. Ch 19, "Mechanisms of Cardiac Contraction and Relaxation" <u>Braunwald's Heart Disease</u>, 7th ed. 2004.

Opie LH. Ch 19, "Mechanisms of Cardiac Contraction and Relaxation" <u>Braunwald's Heart Disease</u>, 7th ed. 2004.

Opie LH. Ch 19, "Mechanisms of Cardiac Contraction and Relaxation" Braunwald's Heart Disease, 7th ed. 2004.

Opie LH. Ch 19, "Mechanisms of Cardiac Contraction and Relaxation" Braunwald's Heart Disease, 7th ed. 2004.

Opie LH. Ch 19, "Mechanisms of Cardiac Contraction and Relaxation" Braunwald's Heart Disease, 7th ed. 2004.

Taylor CW. da Fonseca PC. Morris EP. IP(3) receptors: the search for structure. [Review] [70 refs] [Journal Article. Review. Review, Tutorial] *Trends in Biochemical Sciences. 29(4):210-9, 2004 Apr*

Opie LH. Ch 19, "Mechanisms of Cardiac Contraction and Relaxation" <u>Braunwald's Heart Disease</u>, 7th ed. 2004.

Active diastole: Lusitropic function

- Myocyte relaxation
 - kinetics of crossbridge cycling (slower cycling slows relaxation, such as high afterload in early systole)
 - affinity of Ca++ for TnC (higher affinity slows relaxation)
 - activity of Ca++ reuptake and extrusion (lower activity of SERCA2 or Na-Ca exchanger slows relaxation, such as ischemia)

Active diastole: Lusitropic function

- Restorative forces (titin compression ? Probably not)
 - End-systolic LV volume < equilibrium LV volume</p>
 - Leads to suction
 - Negative pressure reached rarely in MS, otherwise not seen due to LV filling, also damped by viscous forces
 - Pressures below 0 seen in the cath lab are not real, but are due to underdamped waveforms

Passive (Fully Relaxed) Diastole

- Compliance = $\Delta volume/\Delta pressure$, ($\Delta V/\Delta P$)
- End-diastolic pressure-volume relation (EDPVR)
- Factors:
 - Ratio of volume to wall thickness
 - Intrinsic stiffness of myocardial tissue
 - At low volumes largely due to properties of titin
 - At high volumes largely due to properties of connective tissue
 - Stiffness is change in stress (force/cross sectional area) related to change in strain (change from initial length or area)
- External constraints: parietal pericardium, myocardial vascular blood volume (turgor), atrial function

Opie LH. Ch 19, "Mechanisms of Cardiac Contraction and Relaxation" <u>Braunwald's Heart Disease</u>, 7th ed. 2004.

Titin in Diastolic Function

Titin's behavior itself is viscoelastic

Granzier HL et al. <u>Circ Res</u> 2004;94:284

Titin in Diastolic Function

Granzier HL et al. Circ Res 2004;94:284

Mechanism of passive and restoring force generation. Titin's extensible region is in a shortened state in slack sarcomeres (B) and extends on sarcomere stretch (C and D), lowering conformational entropy and giving rise to an entropic force, known as passive force. When slack sarcomeres shorten to below the slack length (A), the thick filament moves into titin's incompressible near Z-disc region (in gray) and the extensible region now extends in a direction opposite of that during stretch, developing restoring force. Figure not to scale.

Titin in Diastolic Function

Lim CC et al. <u>J Gen Physiol</u>. 2005;<u>125</u>:249.

The Z-Disk of the Sarcomere

Hoshijima, M. AJP-Heart Circ Physiol • 2006;290:1313

Spectrum of Dystrophic Syndromes

Guglieri M et al. Clin Chim Acta. 2005;361:54.

Fibrillin-1 in Fibrosis

A J Physiol Heart Circul 2005

Opie LH. Ch 19, "Mechanisms of Cardiac Contraction and Relaxation" Braunwald's Heart Disease, 7th ed. 2004.

Smith, Mikel, in Otto, 1997 from Zile MR. <u>Echocardiography</u> 1992;9:289.

Diastolic Pressure and Flow

Canine model with ultra-sonic crystals and micromanometer pressures

From Ohno M et al. Circulation 1994;89:2241

Diastolic Pressure and Flow

High fidelity LA and LV pressure and Doppler transmitral

Closed chest canine

Courtois M et al. Circulation 1988;78:661

Carroll JD and Hess OM. Ch 20, "Assessment of Normal and Abnormal Cardiac Function" <u>Braunwald's Heart Disease</u>, 7th ed. 2004.

Carroll JD and Hess OM. Ch 20, "Assessment of Normal and Abnormal Cardiac Function" <u>Braunwald's Heart Disease</u>, 7th ed. 2004.

Carroll JD and Hess OM. Ch 20, "Assessment of Normal and Abnormal Cardiac Function" <u>Braunwald's Heart Disease</u>, 7th ed. 2004.

Carroll JD and Hess OM. Ch 20, "Assessment of Normal and Abnormal Cardiac Function" <u>Braunwald's Heart Disease</u>, 7th ed. 2004.

TABLE 20-3Two Pathways of Ventricular Dilation and
Increased Filling Pressure

Hemodynamic (Acute)

Dilation and increased end-diastolic pressure caused when increased venous return or decreased ejection increases end-diastolic volume. This form of dilation occurs when physiological (functional) signaling increases sarcomere length, which increases the heart's ability to perform work (Starling law of the heart)

Architectural (Chronic)

Dilation and increased filling pressures caused when hypertrophy increases cardiac myocyte length and alters passive muscle properties. By increasing wall stress, this growth response increases the energy demands of the heart and decreases cardiac efficiency, initiating a vicious circle that worsens heart failure. This form of dilation occurs when abnormal transcriptional (proliferative) signaling causes eccentric hypertrophy (systolic dysfunction), and it tends to progress (remodeling)

Adapted from Katz A: Ernest Henry Starling, his predecessors, and the "law of the heart." Circulation 106:2986, 2002.

Carroll JD and Hess OM. Ch 20, "Assessment of Normal and Abnormal Cardiac Function" <u>Braunwald's Heart Disease</u>, 7th ed. 2004.

TABLE 20–5	Normal Values of Parameters of Left Ventricular Diastolic Filling Measured by Doppler Echocardiography				
Parameters		Adults <41 yr	Adults >55 yr		
Peak mitral flow velocity (E) (cm/sec)		76 ± 13	63 ± 11		
Peak mitral filling rate (A) (cm/sec)		38 ± 8	52 ± 9		
Mitral E/A		2.1 ± 0.6	1.3 ± 0.3		
Mitral E deceleration time		184 ± 24	—		
Mitral E deceleration rate (m/sec²)		5.6 ± 2.7	—		
Isovolumetric relaxation time (msec)		74 ± 26	—		
Peak pulmonary venous AR wave (cm/sec)		18 ± 3	25 ± 5		
Peak pulmonary venous S wave (cm/sec)		41 ± 10	60 ± 10		
Peak pulmonary D wave (cm/s	y venous sec)	53 ± 10	38 ± 10		

Carroll JD and Hess OM. Ch 20, "Assessment of Normal and Abnormal Cardiac Function" <u>Braunwald's Heart</u> <u>Disease</u>, 7th ed. 2004.

E/A = E wave/A wave ratio.

Data from Little WC. Downes TR: Clinical evaluation of left ventricular diastolic performance. Prog Cardiovasc Dis 32:273, 1990; and Rakowski H, et al: Canadian consensus recommendations for the measurements and reporting of diastolic dysfunction by echocardiography. J Am Soc Echocardiogr 9:745, 754, 1996.

TABLE 20–6	Left Atrial and Ventricular Function Influences on the Pulmonary Venous Flow Velocity Profile				
Pulmonary Venous Wave		Left Atrial Function	LV Function		
First systolic wave		Atrial relaxation			
Second systolic wave		Reservoir function Atrial compliance	LV contraction RV contraction		
Early diastolic v	wave	Conduit function	Ventricular relaxation Ventricular chamber stiffness		
Atrial reversal wave		Booster pump function Atrial compliance	Ventricular chamber stiffness		
LV = left ventricular; RV = right ventricular. Adapted from Tabata T, Thomas JD, Klein AL: Pulmonary venous flow by Doppler echocardiography: Revisited 12 years later. J Am Coll Cardiol 41:1243-1250, 2003.					

Carroll JD and Hess OM. Ch 20, "Assessment of Normal and Abnormal Cardiac Function" <u>Braunwald's Heart Disease</u>, 7th ed. 2004.

TABLE 20–8	Age-Related Differences in LV and Arterial Coupling in Patients with Dilated Cardiomyopathy				
Parameters		Young Patients <35 yr	Intermediate- Aged Patients 35-50 yr	Older Patients >50 yr	
Maximum + dP/dt (mm Hg/sec)		1011 ± 160	1170 ± 159	1147 ± 374	
Stroke work (g-m/m²)		19 ± 10	20 ± 10	19 ± 10	
Pulse pressure (mm Hg)		26 ± 8	30 ± 11	38 ± 10	
Pulse wave velo (m/sec)	ocity	4.7 ± 0.4	6.5 ± 0.9	7.9 ± 0.6	
Systemic vascular resistance (dyn-sec · cm⁻⁵)		1872 ± 789	2373 ± 762	2440 ± 770	
Arterial compliance (ml/mm Hg)		1.33 ± 0.63	0.72 ± 0.40	0.51 ± 0.17	
LV = left ventricula	ır.				

Adapted from Carroll JD, Shroff S, Arand P, et al: Arterial mechanical properties in dilated cardiomyopathy. J Clin Invest 87:1002-1009, 1991.

Carroll JD and Hess OM. Ch 20, "Assessment of Normal and Abnormal Cardiac Function" <u>Braunwald's Heart Disease</u>, 7th ed. 2004.

TABLE 19–5Some Indices of Diastolic Function

Isovolumic Relaxation

(-)dP/dt_{max} (Fig. 19–28) Aortic closing-mitral opening interval Peak rate of LV wall thinning Time constant of relaxation (τ)

Early Diastolic Filling

Relaxation kinetics on ERNA (rate of volume increase) Early filling phase (E phase) on Doppler transmitral velocity trace

Diastasis

Pressure-volume relation indicates compliance

Atrial Contraction

Invasive measurement of atrial and ventricular pressures Doppler transmitral pattern (E to A ratio)

A = atrial contraction phase; E = early filling phase; ERNA = equilibrated radionuclide angiography; LV = left ventricular.

Opie LH. Ch 19, "Mechanisms of Cardiac Contraction and Relaxation" Braunwald's Heart Disease, 7th ed. 2004.

Assessment of Diastolic Function

- <u>M-mode Echo</u>:
 - chamber sizes
 - mitral and LV motion
 - aortic root motion

- <u>2-D (B-mode) Echo</u>:
 - chamber sizes and wall thickness
 - mitral and LV motion
 - aortic root motion
 - atrial volume change
 - interatrial septal shape and motion
- Doppler assessment

Doppler Assessment of Diastole

- Transmitral flow assessment
- Isovolumic relaxation time
- Pulmonary venous flow assessment
- Flow propagation velocity
- Pulse transit time
- Tissue Doppler imaging

LV vol

Normal diastolic pressure-volume relation with increased volume

Abnormal diastolic pressure-volume relation with no change in volume

Normal LVIT Pattern

Decreased Operative Compliance (increase E and short E-deceleration)

> Diastolic Pressure-Volume **Relation and LVIT** Pattern

Nishimura, <u>JACC</u> 1997; <u>30</u>:8

Diastolic Patterns of Pressure, Volume, and Flow Relationship of Pressures, Volumes, and Doppler Flows AC A o Pressure LV MVO 120 Kv IVAT dP/dt -dP/dt peak LV Vol AFF RFF **Doppler TMF** E **Doppler PVF** Ar

Smith, Mikel, in Otto, 1997

LVIT Velocity Measuremen ts

E - peak E velocity
A - peak A velocity
DT - time from peak
E to zero
Decel slope – more
dependent on
peak E height
A dur – duration
of A wave

Nishimura, <u>JACC</u> 1997; <u>30</u>:8

Technical Aspects of LVIT Pattern Leaflet

Tips

Mitral

•Pulsed wave preferred •Apical 4 (or 2 or LA) •Sample volume at mitral leaflet tips •Modal (darkest) velocity

Smith, Mikel, in Otto, 1997

LVIT Flow Pattern

- <u>Normal</u>: E 70-100 cm/s, A 45-70 cm/s, E/A 1.0-1.5, DT 160-220 msec
- <u>Older</u>: lower E, higher A, lower E/A, longer DT
- <u>Arrhythmia</u>: Faster HR and longer PR interval- lower E, higher A, merge at >100; afib - no A, variable E
- <u>Preload</u>: decrease causes decrease in E wave and no change of A wave
- <u>Systolic function</u>: increase in end-systolic volume (systolic dysfunction or high afterload) lowers E and slows DT
- Atrial function: atrial systolic dysfunction gives low A wave
- <u>Respiration</u>: inspiration reduces E by 5-10%, no change in A

Factors Affecting Mitral E/A Ratio

- Increased:
 - Slow heart rate
 - Elevated LA pressure
 - High LV elastic recoil
 - Young age (phys S3)
 - Restrictive hemodyn
 - Severe AR
 - Atrial mechanical fail
 - Small LVESV

- Decreased
 - Abnormal LV relaxation
 - Increased aortic pressure
 - Increased PR interval
 - Tachycardia
 - Asynchronous LV relaxation

Pai RG. <u>Clin Cardiol</u> 1996;<u>19</u>:277

Limitation of LVIT Doppler pattern in diastolic function

Deterioration of diastolic function with benign-appearing LVIT flow

Nishimura, JACC 1997; 30:8

Abnormal Transmitral (LVIT) Filling Patterns

Nishimura, <u>JACC</u> 1997; <u>30</u>:8

Abnormal Relaxation advanced age low preload •systolic dysfunction tachycardia Iong PR •ischemia pulmonary htn **Restrictive Filling** patient with dilated cardiomyopathy

LVIT Doppler Pseudonormalization

62 year-old man, dilated Cardiomyopathy:

Prolonged LV relaxation, tau = 68 msec

Elevated LA pressure 32mmHg

Nishimura, <u>JACC</u> 1997; <u>30</u>:8

CW Doppler of MR

PW Doppler LVIT (not simultaneous)

PR interval and • f • d • f • d • f • d • f • d • f • d • f • d • f • d • f • d • f • d • f • d • f

Baseline:

- first degree AV block
- diastolic MR and
- E-A superimposition

AV sequential pacing:

- PR interval normal
- no diastolic MR
- forward SV increase 40%

Doppler Assessment of Diastole

- Transmitral flow assessment
- Isovolumic relaxation time
- Pulmonary venous flow assessment
- Flow propagation velocity
- Pulse transit time
- Tissue Doppler imaging

Isovolumic Relaxation Time

From Appleton CP et al. Echocardiography 1992;9:437

Isovolumic Relaxation Time

Time from aortic closure to mitral opening

From phono S2 to mitral opening on Mmode

Doppler method: **Apical five-chamber** view **CW Doppler** Directed between aortic outflow and mitral inflow

Normal 65 msec +/- 20

Smith, Mikel, in Otto, 1997

<u>Short IVRT</u>: restrictive cardiomyopathy restrictive filling pattern Long IVRT: advanced age, impaired relaxation

Isovolumic Relaxation Time

Increased by

- Abnormal LV relaxation (2)
 - Ischemia, infarction, hypertrophy, DM
- Elevated aortic pressure (1)
- Asynchrony of LV relaxation (LBBB, Paced, HCM) (2)
- Aging (1,2)

Pai RG. Clin Cardiol 1996;19:277

- Decreased by
 - Elevated LA pressure(3)
 - Tachycardia (2)
 - Elevated sympathetic tone, catecholamines (2)
 - Smaller LV end-systolic volume (1)

Intraventricular flow during Isovolumic Relaxation

<u>Abnormal flow</u> from apex to base during IVRT in patient with <u>anterior MI</u> and apical wall motion abnormality.

Normally flow is from base to apex.

Edvardsen et al, <u>JASE</u> 1999; <u>12</u>:801

Doppler Assessment of Diastole

- Transmitral flow assessment
- Isovolumic relaxation time
- Pulmonary venous flow assessment
- Flow propagation velocity
- Pulse transit time
- Tissue Doppler imaging

Pulmonary Venous Flow

- <u>Technique</u>: TTE right upper pulmonary vein, 5-10 mm from orifice
- <u>Waves</u>:
 - systolic usually dominant (S, 40-60 cm/s)
 - early atrial relaxation
 - late descent of MV annulus
 - <u>diastolic</u> (D, 35-45 cm/s, coincides with MV E wave but 50 msec later, from ventricular relaxation)
 - <u>atrial reversal</u> (Ar, 22-32 cm/s, duration 137msec, larger with high atrial afterload and preserved atrial systolic function)
- Tachycardia S and D waves may merge

Pulmonary Venous Flow

From Rossvoll O et al. (Hatle) J Am Coll Cardiol 1993:21:1687

Pulmonary Venous Flow Pattern

- LV preload and systolic and diastolic function
 - Increased LA pressure lower S if LV systolic dysfunction, (more S if LV systolic function is preserved)
 - Impaired relaxation larger S and lower D, corresponding to lower MV E
 - Pseudonormal lower S and dominant D wave and larger Ar wave (lower LV compliance)
 - Restrictive low S and large D and rapid D deceleration, Ar is variable
- Age increases systolic dominance and maybe Ar
- <u>Mitral regurgitation</u>* reduces S wave, reverses if severe MR
- <u>Large ASD</u> causes single continuous antegrade wave and diminished AR wave**

*Rossi A, et al. J Am Soc Echocardiogr 2001;14:562 **Saric M, et al. J Am Soc Echocardiogr 2001;14:386

Normal Pulmonary Vein PW Doppler Patterns

S - systolic **D** - diastolic SE - early systolic atrial relaxation SL - late systolic descent of annulus MV Ar - atrial reversal Si - systolic integral Di - diastolic integral Transesophageal

Transthoracic

Smith, Mikel, in Otto, 1997

Pulmonary Venous Flow and LA pressure

With higher LA pressure, the S wave is lower

LA pressure

PV velocity

ECG

Mean LA = 15 mmHg

Kuecherer HR et al. Circulation 1990;82:1127

Pulmonary Venous Doppler and LV Diastolic Pressure

- 78 patients with chronic atrial fibrillation
 35 study group
 23 test group
- Wedge pressure simultaneous or very close in time to echo-Doppler
- Mitral and pulmonary vein flow patterns

 Pulmonary venous diastolic measurements
 Transmitral E wave measurements

Chirillo F et al. J Am Coll Cardiol 1997;30:19

Pulmonary Venous Doppler and LV Diastolic Pressure

Chirillo F et al. J Am Coll Cardiol 1997;30:19

Pulmonary Venous Doppler and LV Diastolic Pressure

Pulmonary Venous Doppler and LV Diastolic Pressure

Pulmonary Venous Doppler and LV Diastolic Pressure

Chirillo F et al. J Am Coll Cardiol 1997;30:19

Pulmonary Venous Doppler and Wedge Pressure

- 141 patients with acute first MI and sinus rhythm
- Time since MI 2.1 days, <7 da
- Exclusions: merging of LVIT E and A waves, valvular disease
- Simultaneous PCWP
- E deceleration negative correlation with PCWP
- PV deceleration strong negative correlation with PCWP
- Yamamuro A et al. J Am Coll Cardiol 1999;34:90

Pulmonary Venous Doppler and Wedge Pressure

Yamamuro A et al. J Am Coll Cardiol 1999;34:90

Pulmonary Venous Doppler and Wedge Pressure

Yamamuro A et al. J Am Coll Cardiol 1999;34:90

Pulmonary Venous Doppler and LV Diastolic Pressure

- 93 patients undergoing surgery (CABG or AVR), intraoperative TEE, S-G cath and LA cath
- End-expiration (positive pressure)
- PV Doppler 10 mm from orifice of a superior pulmonary vein
- If PV-D deceleration was bimodal, the first and steeper portion was extrapolated to zero to obtain deceleration time (DT_D)
- $DT_D < 175$ msec implies LA pressure >17 mmHg

Kinnaird TD et al. J Am Coll Cardiol 2001;37:2025

Pulmonary Venous Doppler and LA Pressure

Pulmonary Venous Doppler and LV Diastolic Pressure

Bland-Altman plot variation up to 6 mmHg

Similar results in 2 other studies, one in atrial fibrillation and one in recent MI

Kinnaird TD et al. J Am Coll Cardiol 2001;37:2025

0

10

20

PCWP (mmHg)

30

40

PV Deceleration and LA Pressure

Abscissa and Ordinate Inverted

0 +

10

20

PCWP (mmHg)

30

40

PV Deceleration and LA Pressure

Abscissa and Ordinate Inverted

PV Deceleration and LA Pressure

Impaired LV Relaxation

<u>Transmitral flow</u>: Small E, slow E decel, Large A

2 hypertensive patients with impaired relaxation

Smith, Mikel, in Otto, 1997

Pseudonormal Diastolic Pattern

Transmitral flow: Normal E and A pattern

Smith, Mikel, in Otto, 1997

Pulmonary vein flow: reduced S wave from decreased atrial relaxation, possibly large Ar wave from reduced ventricular compliance

Pseudonormal Diastolic Pattern

Transmitral flow: Normal E and A pattern

Smith, Mikel, in Otto, 1997

Pulmonary vein flow: reduced S wave from decreased atrial relaxation, possibly large Ar wave from reduced ventricular compliance

Restrictive Diastolic Pattern

<u>Transmitral flow</u> restrictive pattern large E, short decel time, small A <u>Pulmonary vein flow</u> small S wave, large D wave, rapid D descent, no Ar (atrial failure)

Smith, Mikel, in Otto, 1997

Assessing LVIT and PV flows: Comparing LVIT-A with PV-Ar

Rossvoll O et al. J Am Coll Cardiol 1993;21:1687

Doppler Assessment of Diastole

- Transmitral flow assessment
- Isovolumic relaxation time
- Pulmonary venous flow assessment
- Flow propagation velocity
- Pulse transit time
- Tissue Doppler imaging

Color M-Mode Propagation Velocity

Garcia et al <u>JASE</u> 1999; <u>12</u>:129

Color M-Mode Propagation Velocity Measure slope: First aliasing velocity • Begin at mitral tips to 4 cm distally May be curvilinear End-expiration Average several measures Adjust scale or baseline to produce aliasing (50-75% of peak **E transmural PW Doppler**)

Color M-Mode Propagation Velocity

Normal

LVIT-E normal Vp normal

Delayed Relaxation Restrictive

LVIT-E reduced Vp reduced LVIT-E augmented Vp reduced

Color Flow Propagation Velocity

Resting Normal LAD balloon occlusion Delay filling Balloon down Normal

Stugaard M. Circulation 1993;88:2708

Color Flow Propagation Velocity

Resting Normal LAD balloon occlusion Balloon down Delay filling Normal

Stugaard M. Circulation 1993;88:2708

Prognostic Value of LVIT Pattern and Flow Propagation Velocity

• 125 pts with first MI

- If DT>140 and <240ms and VP>45 cm/s = normal (38 pts)
- DT>240 = impaired relaxation (38 pts)
- DT nl and VP<45 cm/s = pseudonormal (26 pts)
- DT<140 = restrictive (23 pts)</p>
- Progressive higher age, admission HR, peak CK, Killip class, and lower BP
- Progressive larger ventricles, lower EF, worse wall motion score, shorter IVRT, and MR regurgitation
- Restrictive or pseudonormal filling pattern was risk for death, relative risk 4 to 6, more than Killip class, age, wall motion, or peak CK

Moller JE et al. J Am Coll Cardiol 2000;36:1841

Doppler Assessment of Diastole

- Transmitral flow assessment
- Isovolumic relaxation time
- Pulmonary venous flow assessment
- Flow propagation velocity
- Pulse transit time
- Tissue Doppler imaging

LV transit time in Early **Diastole in Normal and** Hypertrophic Cardiomyopathy

Te = 90 msec Te = 195 msed

B

Pai, R, <u>JASE</u> 1999; 10:532

Transit time from LVIT to LVOT During early and late diastole

Pai, R et al, <u>JASE</u> 1999; <u>12</u>:811

Doppler Assessment of Diastole

- Transmitral flow assessment
- Isovolumic relaxation time
- Pulmonary venous flow assessment
- Flow propagation velocity
- Pulse transit time
- Tissue Doppler imaging

Tissue Doppler Echocardiography in Diastolic Function

Pulsed Doppler A-4C LVIT

Tissue Doppler Echocardiography A-4C MV annulus

Normal Healthy Volunteer Pseudonormalization Severe Aortic Stenosis

Normal

Restriction

Constriction

M-mode Mitral Annulus

PW Doppler LVIT

Tissue Doppler Axial Velocity

Measures of Elevated LV Filling Pressure

- LVIT E/A >2
- LVIT Edeceltime<150ms
- Short IVRT
- PV S/D <<1
- PVAr>MVAdur
- LAE, low LA EF, atrial septum bulge to right in systole
- LVE

 Caveats: Better if LV EF is low; none is truly reliable; correlation with which measure – LVEDP-Z, PCWP, LV preA, mean LA

Estimating LV Filling Pressure

В А 100 3 E wave (cm/sec) E/A 50 y=1.24x+24 4 y=0.07x -0.03 r = 0.86 r =0.94 SEE = 0.34 SEE=9 10 20 30 20 40 40 10 30 50 50 PCWP (mm Hg) PCWP (mm Hg) 80 y=54.7-0.78 x 70 atrial filling fraction (*/.) r = -0.82 SEE = 7.5 60 50 40 30 20-10-20 10 30 40 50 PCWP (mmHq)

34 patients with DCM

From Vanoverschelde JJ et al. J Am Coll Cardiol 1990;15:1288.

Tissue Doppler Imaging (Doppler myocardial imaging, DMI) of AV Ring

- Differentiating constriction from restriction
 - 2D echo informs on ventricular function and pericardial calcification
 - PW Doppler of ventricular filling usually differentiates

 TDI is reported to differentiate, but exceptions are reported now (2 patients with constriction and low early TDI movement and hyperdynamic movement of the apex, a structure that usually is stationary)

Arnold MF et al. J Am Soc Echocardiogr 2001;14:391

Stages of Diastolic Dysfunction

	Normal (young)	Normal (adult)	Delayed Relaxation	Pseudonormal Filling	Restrictive Filling
E/A (cm/s)	>1	>1	<1	1-2	>2
DT (ms)	<220	<220	>220	150-200	<150
IVRT (ms)	<100	<100	>100	60-100	<60
S/D	<1	≥1	≥1	<1	<1
AR (cm/s)	<35	<35	<35	≥35	≥25
Vp (cm/s)	>55	>45	<45	<45	<45
Em (cm/s)	>10	>8	<8	<8	<8

Stages of Diastolic Dysfunction									
	Normal (young)	Normal (adult)	Delayed Relaxation	Pseudonormal Filling	Restrictive Filling				
E/A (cm/s)	>1	>1) 1-2	>2				
DT (ms)	<220	<220	>220	150-200	<150				
VRT (ms)	<100	<100	>100	60-100	<60				
S/D	<1	≥1	≥1	<1	<1				
AR (cm/s)	<35	<35	<35	≥35	≥25				
Vp (cm/s)	>55	\$45	<45	> <45	<45				
Em (cm/s)	>10_	<u> </u>	<8	> <8	<8				
Differentiation of Diastolic Problems

Hoit, Fig 68-2, From Hurst, 2001

COPD and Diastole: RV and LV

- 48 patients with severe COPD
 - Group 1: 25 pulmonary hypertension
 - Group 2: 23 normal PA pressure
 - Group 3: 59 normal controls
- Pulmonary hypertension:
 - Lower TV and MV E, Higher TV and MV A, longer IVRT and slower propagation velocity than Groups 2 or 3, and no difference between group 2 and 3.

Ozer N, et al. J Am Soc Echocardiogr 2001;14:557-61

Mitral Regurgitation to estimate tau (relaxation constant)

Smith, Mikel, in Otto, 1997, from Nishimura RA et al. Circulation 1993;88:146.

Review References

- Oh JK et al. The noninvasive assessment of left ventricular diastolic function with two-dimensional and Doppler echocardiography. <u>J Am Soc</u> <u>Echocardiogr</u> 1997;10:246-70
- Appleton CP et al. Doppler evaluation of left and right ventricular diastolic function: a technical guide for obtaining optimal flow velocity recordings. <u>J Am Soc Echocardiogr</u> 1997;10:271-91
- Nishimura RA et al. Evaluation of diastolic filling of left ventricle in health and disease: Doppler echocardiography is the clinician's Rosetta stone. J <u>Am Coll Cardiol</u> 1997;30:8-18
- Garcia MJ et al. New Doppler echocardiographic applications for the study of diastolic function. <u>J Am Coll Cardiol</u> 1998;32:865-75
- Smith MD. Left ventricular diastolic function: clinical utility of Doppler echocardiography. Ch. 3 in Otto CM. <u>The Practice of Clinical</u> <u>Echocardiography</u> WB Saunders, 1997
- Pai RG. Newer Doppler measures of left ventricular diastolic function. <u>Clin Cardiol</u> 1996;19:277
- Rakowski H et al. Canadian consensus recommendations for the measurement and reporting of diastolic dysfunction by echocardiography. <u>J Am Soc Echocardiogr</u> 1996;9:736

Pulmonary Venous Flow Pattern

- LV preload and systolic and diastolic function
 - Increased LA pressure more S dominance if LV systolic function is preserved, lower S if LV systolic dysfunction
 - Impaired relaxation lower D wave and more S, corresponding to lower MV E
 - Pseudonormal dominant D wave and larger Ar wave (lower LV compliance)
 - Restrictive has large D and rapid D deceleration, Ar is variable
- RV systolic function
- SBP and peripheral vascular resistance
- Age increases systolic dominance and maybe Ar
- Mitral regurgitation* reduces S wave, reverses if severe MR
- Large ASD causes single continuous antegrade wave and diminished AR wave**

*Rossi A, et al. J Am Soc Echocardiogr 2001;14:562 **Saric M, et al. J Am Soc Echocardiogr 2001;14:386

Titin in Diastolic Function

- Also called connectin, after actin and myosin the third most abundant muscle protein, about 10% of muscle protein
- Molecular scaffolding for thick filament formation (highly ordered and tightly attached to thick filament in the A band)
- Giant protein (3,000 kD) providing most of the elasticity of resting striated muscle, especially the I-band region (with thin filament)
- Resting length 1 micrometer spanning from Z to M lines
- Structure: 300 Ig and related FNIII repeats (account for almost 90% of its mass), and PEVK domain (Pro-Glu-Val-Lys) that makes a polyproline helix (PPII)
- Abnormality in titin gene has been implicated in familial hypertrophic cardiomyopathy*

Labeit S et al. <u>Circulation Research</u> 1997;80:290 *Kimura A et al. <u>Journal of Cardiology</u> 2001;37Suppl 1:139

Titin in Diastolic Function

Titin Structure

Domain architecture and sarcomeric layout of the titin filament. The domain structure of the human soleus titin, as predicted by its 100-kb mRNA, is shown. The 3.7-MD soleus titin peptide contains 297 copies of 100-residue repeats, which are members of the Ig and FN3 superfamilies. Each of these domains folds into a 10- to 12-kD small globular subunit, as shown by structural studies. Specific for the I-band segment of titin are strings of tandemly repeated Ig domains (tandem-Ig titin) and the "PEVK domain," rich in proline, glutamate, valine, and lysine residues. The tandem-Ig and the PEVK region of titin represent those parts of the titin filament that extend during physiological amounts of stretch. Specific for the A-band titin are regular patterns of Ig and FN3 domains, referred to as "super repeats." These super repeats provide multiple and structurally ordered binding sites for myosin and C protein. In addition to the Ig/FN3 repeats and the PEVK region of titin's mass is formed by unique sequence insertions. Among the encoded peptides are phosphorylation motifs (P_i) and a serine/threonine kinase. The mapped calpain p94-binding sites are shown. Arrows above the domain pattern indicate the sites

Titin Structure

Current model of titin extension with sarcomere stretch in psoas muscle. The inset shows a typical passive length-tension curve of single psoas myofibrils, with the letters A through D referring to the sarcomere lengths depicted in the main figure. It should be pointed out that this model proposed for psoas titin extension may not adequately address the situation in cardiac muscle, where the contribution of the short PEVK segment to I-band titin extensibility is very small. In cardiac sarcomeres, a significant passive tension increase appears shortly above slack length and seems to be correlated with extension of the tandem-Ig region. The precise mechanism of titin elasticity remains to be elucidated. Color codes are as follows: blue, actin; green, myosin; yellow, PEVK region of titin; and red, non-PEVK domains. The filled circles represent the I-band tandem-Ig modules. T12, N2-A, MIR, and BD6 are known binding sites of titin antibodies used to measure the extension

Titin in Diastolic Function

Model for titin in the sarcomere. The titin filament is shown in black, the thin filament (actin) in yellow, and the thick filament (myosin) in red. The epitopes of the titin antibodies T12 and antibodies to the MIR have been mapped in the sarcomere by immunoelectron microscopy; the positions of their epitopes in the titin sequence are known. Antibodies to the titin kinase domain react with the periphery of the M line. Therefore, it can be estimated which sections of the titin sequence are in the Z disc, I band, A band, and the M line. For the I band, the range of variation as predicted by the observed splice variants is indicated. The presumed extensible element of the I band, the PEVK element, is located between the N2 line titin and the second tandem Ig block (zig-zag pattern). Within the thick filament in the central C zone (green stripes), titin binds to both the C protein and myosin and is likely to specify the presence of 11 copies of the 430 Angstrom thick filament repeat in vertebrate striated muscles. Phosphorylation of tandemly arranged Ser-Pro repeats in the Z disc and the M line titin (red P) may control integration of the titin filament intro 2 disc and M lines during myogenesis

Domain structure of the cardiac titin filament. The modular architecture of cardiac titin as predicted by its fulllength cDNA is shown. A total of 244 copies of 100-residue repeats (indicated by vertical rectangles) are contained, of which 112 belong to the lg (red) domain and 132 to the FN3 (white) superfamily. The 100-residue repeats are indicated by region and position regardless of whether they are Ig or FN3 domains. The titin kinase domain is shown in black, the PEVK element (N2-B 163-residue variant; see Figure 3 in yellow. Sequences with no homology to database entries comprise 10% of the titin primary structure (blue). The epitope positions of T12 and MIR are indicated. The change in motif organization NH (_{2-terminal}) of T12 is proposed to be the Z disc-I band junction; the start of super-repeats COOH-terminal of MIR is proposed to be the beginning of the A band region of titin. Within the A band region, the D zone contains six copies of the seven-module super-repeat (A1 through A42); the C zone contains 11 copies of the 11-module super-repeat (A43 through A163). The positions of the tandemly repeated RMSP and VKSB anetifs in the Z disc and M line region of titin are shown [20].

Labeit M et al. Science 1995;270:293

Titin in Diastolic Function

Tskhovrebova L et al. Nature, 1997;387:308.

Opie LH. Ch 19, "Mechanisms of Cardiac Contraction and Relaxation" Braunwald's Heart Disease 7th ed. 2004

g d f а C e g а Aortic pressure AO Aortic closure Ventricular pressure Atrial MO Crossover pressure cara-S4 Heart sounds Cardiologic systole JVP ECG 0 0 800 msec The Lewis or Wiggers Cycle iso iso

Rate-Tension Relation

TABLE 19–1 Characteristi	ics of Cardiac Cells, Organelles	, and Contractile Proteins	
Microanatomy of Heart Cells			
Characteristic	Ventricular Myocyte"	Atrial Myocyte	Purkinje Cells
Shape	Long and narrow	Elliptical	Long and broad
Length, µm	60-140	About 20	150-200
Diameter, µm	About 20	5-6	35-40
Volume, µm³	15,000-45,000	About 500	135,000-250,000
T-tubules	Plentiful	Rare or none	Absent
Intercalated disc	Prominent end-to-end transmission	Side-to-side as well as end-to-end transmission	Very prominent abundant gap junctions. Fast; end-to-end transmission
General appearance	Mitochondria and sarcomeres very abundant. Rectangular branching bundles with little interstitial collagen	Bundles of atrial tissue separated by wide areas of collagen	Fewer sarcomeres, paler
	Composition and Fu	inction of Ventricular Cell	
Organelle	% of Cell Volume	Function	
Myofibril	About 50-60	Interaction of thick and thin filaments during contraction cycle	
Mitochondria	16 in neonate 33 in adult rat 23 in adult human	Provide adenosine triphosphate chiefly for contraction	
T system	About 1	Transmission of electrical signal from sarcolemma to cell interior	
Sarcoplasmic reticulum (SR)	33 in neonate 2 in adult	Takes up and releases Ca ³⁺ during contraction cycle	
Terminal cisternae of SR	0.33 in adult	Site of calcium storage and release	
Rest of network of SR	Rest of volume	Site of calcium uptake en route to cisternae	
Sarcolemma	Very low	Control of ionic gradients; channels for ions (action potential); maintenance of cell integrity; receptors for drugs and hormones	
Nucleus	About 5	Protein synthesis	
Lysosomes	Very low	Intracellular digestion and proteolysis	
Sarcoplasm (= cytoplasm) {+ nuclei + other structures}	About 12 in adult rat 18 in humans	Provides cytosol in which rise and fall of ionized calcium occur; contains other ions and small molecules	

TABLE 19–2	BLE 19–2 Ionic Effects of Adrenergic and Cholinergic Stimulation: Relation to Heart Rate and Contractile Activity			
Agonist		Ionic Current	Effect	
Beta-adrenergic stimulation* ^{,†}		I _{Ca} increased I _K increased I _{Ks} increased [‡] I _{to} increased I _f increased I _{Na} increased	+Inotropic ↓APD, ↑filling time ↓APD, ↑filling time ↓APD, ↑filling time ↑Heart rate ↑Contraction, ↑conduction	
Acetylcholine (ACh) during beta stimulation*,§		I _{ca} decreased I _{Na} decreased I _f decreased	–Inotropic –Dromotropic –Chronotropic	
ACh direct effe currents [∎]	ct on K+	I _{kach} and I _{karp} increased	Heart rate↓	
Alpha-adrenerg stimulation [¶]	ic	I _{to} decreased I _k decreased I _{kACh} decreased	+Inotropic +Inotropic Atrial current, effects not clear	
 *Data from Matsuda et al.¹³⁰ [†]Data from Matsuda et al.¹³¹ [‡]Data from Volders et al.¹³⁵ [§]Data from Chang and Cohen¹³² [¶]Data from Kurachi.¹³³ [¶]Data from Fedida.¹³⁴ - = negative; + = positive; ↑ = increased; ↓ = decreased; APD = action potential duration; ATP = adenosine triphosphate. 				

TABLE 19–3The Cardiac Cycle

Left Ventricular Contraction Isovolumic contraction (b) Maximal ejection (c)

Left Ventricular Relaxation Start of relaxation and reduced ejection (d) Isovolumic relaxation (e) LV filling: rapid phase (f) Slow LV filling (diastasis) (g)

Atrial systole or booster (a)

The letters a to g refer to the phases of the cardiac cycle shown in Wiggers' diagram (Fig. 19–19). These letters are arbitrarily allocated so that atrial systole (a) coincides with the A wave and (c) with the C wave of the jugular venous pressure.

LV = left ventricular.

TABLE 19–4Physiological Versus Cardiologic Systole
and Diastole

Physiological Systole Isovolumic contraction Maximal ejection

Cardiologic Systole From M₁ to A₂, including: Major part of isovolumic contraction* Maximal ejection Reduced ejection

Physiological Diastole Reduced ejection Isovolumic relaxation Filling phases

*Note that M_1 occurs with a definite albeit short delay after the start of LV contraction.

TABLE 19–6Characteristics of Stunning, Hibernation, and Ischemia			
Parameter	Stunning	Hibernation	True Ischemia
Myocardial mechanical function	Reduced	Reduced	Reduced
Coronary blood flow	Postischemic: normal/high	Modestly reduced or low normal; reduced coronary vascular reserve	Most severely reduced
Myocardial energy metabolism	Harmful effects of fatty acid fuels versus glucose	Reduced or low normal; in steady state with intermittent ischemia-reperfusion	Reduced; increasingly severe as ischemia proceeds
Duration	Hours to days; merges with delayed recovery from ischemia over weeks	Days to hours to months; occasionally longer	Minutes to hours; then lethal
Outcome	Full spontaneous recovery	Variable recovery if revascularized	Myocyte necrosis if severe ischemia persists
Proposed change in metabolic regulation of calcium	Cytosolic overload of calcium in early reperfusion with damage to contractile proteins	Hypothetically enough glycolytic ATP to prevent contracture (glucose mismatch)	Insufficient glycolytic ATP to prevent calcium overload and irreversibility

ATP = adenosine triphosphate.

Modified from Opie L, Heusch G: Lack of blood flow: Ischemia and angina. In Opie LH (ed): Heart Physiology, from Cell to Circulation. 4th ed. Philadelphia, Lippincott Williams & Wilkins, 2004, pp 525-552.

TABLE 19–7	Abnormalities of Calcium Cycling in Heart Failure			
Subcellular		Organelle	Whole Heart	Reference
SERCA2a↓		SR Ca depleted	Negative FFR	127
RyR hyperphosph	orylated	SR Ca release↓ Diastolic leak	Rate of contraction↓ Diastolic tension↑	126 136
Na/Ca exchange ↑		Released Ca extruded	Negative FFR	137
Prolonged APD a	nd RyR changes	Cytosolic Ca↑	Diastolic tension↑ with pacing	138

APD = action potential duration; FFR = force-frequency relationship; RyR = ryanodine receptor; SERCA = sarcoendoplasmic reticulum Ca²⁺-adenosine triphos-phatase; SR = sarcoplasmic reticulum.

Carroll JD and Hess OM. Ch 20, "Assessment of Normal and Abnormal Cardiac Function" <u>Braunwald's Heart</u> <u>Disease</u>, 7th ed. 2004.

Carroll JD and Hess OM. Ch 20, "Assessment of Normal and Abnormal Cardiac Function" <u>Braunwald's Heart</u> <u>Disease</u>, 7th ed. 2004.

Carroll JD and Hess OM. Ch 20, "Assessment of Normal and Abnormal Cardiac Function" Braunwald's Heart Disease, 7th ed. 2004.

Carroll JD and Hess OM. Ch 20, "Assessment of Normal and Abnormal Cardiac Function" <u>Braunwald's Heart</u> <u>Disease, 7th ed. 2004.</u>

TABLE 20–1 Uses of Cardiac Function Assessment

Diagnosis Prognostication Timing of intervention Mechanism of therapy Assessment of therapy Detection of complications Surrogate for clinical outcomes

Carroll JD and Hess OM. Ch 20, "Assessment of Normal and Abnormal Cardiac Function" <u>Braunwald's Heart Disease</u>, 7th ed. 2004.

TABLE 20–2	Definitions of	of Terms Used to Describe Systolic and Diastolic Function
Term		Definition
Preload		Distending force of the ventricular wall, which is highest at end-diastole and is responsible for sarcomere length at the beginning of systolic contraction
Afterload		Resisting force of the ventricular wall during systolic ejection, which is necessary to overcome peripheral vascular resistance or impedance; measures of afterload are peak-systolic, mean-systolic, or end-systolic wall stress
Contractility		Intrinsic ability of the myocardium to generate force at a certain rate and time (controlled for loading conditions)
Cardiac output		Stroke volume multiplied by heart rate
Stroke work		Mean systolic blood pressure multiplied by stroke volume
Stroke force		Stroke work per ejection time
Stress		Force per area
Wall stress		Pressure multiplied by radius, divided by wall thickness $\times 2$
Compliance or d	istensibility	Change in volume per change in pressure (dV/dP)
Elastance		Slope of the end-systolic pressure-volume relation
Elasticity		Property of a material to restore its initial length or geometry after distending force has been removed
Strain		Length change in percent of initial length; two definitions are used: LaGrangian strain $e = (l - l_o)l_o$ and natural strain $e = \ln(l/l_o)$
Stiffness		Pressure per volume change (dP/dV). <i>Ventricular stiffness</i> is a measure for changes of the ventricle as a whole; <i>myocardial stiffness</i> is a measure for changes of the myocardium itself. Ventricular properties are characterized by instantaneous pressure-volume relations, whereas myocardial properties are best described by stress-strain relations.
Creep		Time-dependent lengthening of a material in the presence of a constant force
Stress relaxation		Time-dependent decrease of stress in the presence of a constant length
Viscoelasticity		Resistance of a material to length changes (strain) or the velocity of length changes (strain rate)

Carroll JD and Hess OM. Ch 20, "Assessment of Normal and Abnormal Cardiac Function" <u>Braunwald's Heart Disease</u>, 7th ed. 2004.

Carroll JD and Hess OM. Ch 20, "Assessment of Normal and Abnormal Cardiac Function" <u>Braunwald's Heart Disease</u>, 7th ed. 2004.

Carroll JD and Hess OM. Ch 20, "Assessment of Normal and Abnormal Cardiac Function" Braunwald's Heart Disease, 7th ed. 2004.

cs of Selected Indices of	f Global Ventricu	lar Function		
Sensitive to Inotropic Changes	Dependence On Preload	Dependence On Afterload	Dependence On Ventricular Volume or Mass	Ease of Application
tening ++	++	+++	++	++++
on +	0	+++	++	++++
+++	0	+++	++	+++
+++	0	0	0	+
++++	0	0	+++	+
++++	0	0	0	+
+++	0	0	++	+
++++	++	++	++	++
	cs of Selected Indices of Sensitive to Inotropic Changes tening ++ on + +++ +++ +++ ++++ ++++ ++++ ++++	cs of Selected Indices of Global VentriculSensitive to Inotropic ChangesDependence On Preloadtening++++on+0+++0+++on+++0++++0++++on++++0++++0++++++++0++++	cs of Selected Indices of Global Ventricular FunctionSensitive to Inotropic ChangesDependence On PreloadDependence On Afterloadtening++++++++on++0+++on+++0++++++000++++000++++000++++000+++++++++++++	cs of Selected Indices of Global Ventricular FunctionSensitive to Inotropic ChangesDependence On PreloadDependence On AfterloadDependence On Ventricular Volume or Masstening++++++++++on+0+++++on+0++++++++0000++++000+++++++00+++++++00+++++++00++++++++++++++++

ESPVR = slope of end-systolic pressure-volume relation; VCF = velocity of circumferential fiber shortening; dP/dt = rate of ventricular pressure rise. Adapted from Carabello B: Evolution of the study of left ventricular function: Everything old is new again. Circulation 105:2701, 2002.

Carroll JD and Hess OM. Ch 20, "Assessment of Normal and Abnormal Cardiac Function" <u>Braunwald's Heart Disease</u>, 7th ed. 2004.

TABLE 20–7 Echo	Doppler Assessment and MR Imaging of Right V	/entricular Size, Shape, and Function
Parameter	Echo/Doppler	MR imaging
RV volume	Standard 2D views allow measurement of multiple dimensions (Fig. 20-15). The parasternal long-axis view shows the outflow tract diameter	Segmentation of individual slices provides chamber size. Adjacent areas are then summated to provide volume and shape measurements
Regional wall motion	Free RV wall and interventricular septum are imaged and paradoxical motion can easily be detected	Cine MR imaging provides contrast between the blood pool and the myocardial wall. RV wall motion is assessed using RVOT cines in the sagittal and short-axis cine images
RV mass	Approximated by wall thickness determinations along with chamber size measurements	Myocardium from the junction between the RV free wall and the interventricular septum can be traced on each slice from the base to the apex, including trabeculations. Myocardial volume computed from summated multiple slices is multiplied by 1.05 to give the mass in grams
RV wall composition	Not well studied in transthoracic images. Intracardiac ultrasound provides higher resolution data	MR imaging is potentially useful to distinguish fat from muscle
Regurgitant fraction	Doppler profiles provide semiquantitative approach	True regurgitant volumes can be measured from phase velocity maps in the main pulmonary artery and aortic root

RV = right ventricular; RVOT = RV outflow tract; 2D = two-dimensional.

Carroll JD and Hess OM. Ch 20, "Assessment of Normal and Abnormal Cardiac Function" <u>Braunwald's Heart Disease</u>, 7th ed. 2004.