Vectorcardiography

November 9, 2006 Joe M. Moody, Jr, MD UTHSCSA and STVHCS

Outline

- Display and terminology
 Depolarization basics
- Sequence of activation of the heart
- Correlation of ECG and VCG
- Normal
- Common abnormalities

Depolarization Basics

Friedman HH. Diagnostic electrocardiography and vectorcardiography 1971

Depolarization Basics

Friedman HH. Diagnostic electrocardiography and vectorcardiography 1971

The Vector Concept

- rional Fian
- Magnitude
- Direction

The direction of the arrow is the direction of depolarization

Chou TC et al. Clinical Vectorcardiography, 2nd ed, 1974

Friedman, 1971 and Chou, 1974

Right Sagittal plane

Frontal plane

Sequence of Activation

Netter

Netter

L. VENTRICULAR DEPOLARIZATION

APICAL DEPOLARIZATION

LATE L. VENTRICULAR DEPOLARIZATION

VENTRICLES DEPOLARIZED

Netter

VENTRICLES REPOLARIZED

×

×

×

×

×

×

Sequence of Depolarization

Sequence of Depolarization

Chou TC et al. <u>Clinical Vectorcardiography</u>, 2nd ed, 1974

Sequence of Ventricular Activation

SEQUENCE OF VENTRICULAR ACTIVATION

PHASE I INITIAL SEPTAL ACTIVATION. (0.01 SEC)

- PHASE 2 CONTINUED ACTIVATION OF SEPTUM AND ACTIVATION OF APICO-ANTERIOR PORTIONS OF RIGHT AND LEFT VENTRICLES. (0.02 SEC)
- PHASE 3 COMPLETION OF SEPTAL ACTIVATION AND ACTIVATION OF MOST, IF NOT ALL, OF RIGHT VENTRICLE AND MOST OF LEFT VENTRICLE. (0.04-0.06 SEC) PHASE 4 ACTIVATION OF POSTEROBASAL REGION OF LEFT VENTRICLE, BASE OF SEPTUM AND BASE OF RIGHT
 - VENTRICLE. (0.06-0.08 SEC)

Friedman HH, 1971

Sequence of Ventricular Activation

Friedman HH, 1971

Sequence of Ventricular Activation

Friedman

Sequence of Activation

Deriving the Vector from the Scalar

From Grant RP. <u>Clinical</u> <u>Electrocardiography</u>. McGraw-Hill. 1957

Deriving the Vector from the Scalar

From Grant RP. Clinical Electrocardiography. McGraw-Hill. 1957

Deriving the Vector from the Scalar

From Grant RP. Clinical Electrocardiography. McGraw-Hill. 1957

Normal Frontal Plane QRS Loop

Mean maximal vector

Chou TC et al. <u>Clinical Vectorcardiography</u>, 2nd ed, 1974

Standard Limb Lead Projection

Chou TC et al. <u>Clinical Vectorcardiography</u>, 2nd ed, 1974

Limb Lead ECG and VCG

Vectorcardiographic Measurements

Chou TC et al. <u>Clinical Vectorcardiography</u>, 2nd ed, 1974

Vector Terminology

Chou TC et al. <u>Clinical Vectorcardiography</u>, 2nd ed, 1974

erse Plane

- E point is the beginning of the P wave, the end of the T-P segment
- O point is the end of the PR segment, the beginning of the QRS

- E point is the beginning of the P wave, the end of the T-P segment
- O point is the end of the PR segment, the beginning of the QRS

- E point is the beginning of the P wave, the end of the T-P segment
- O point is the end of the PR segment, the beginning of the QRS

- E point is the beginning of the P wave, the end of the T-P segment
- O point is the end of the PR segment, the beginning of the QRS

- E point is the beginning of the P wave, the end of the T-P segment
- O point is the end of the PR segment, the beginning of the QRS

Transverse Plane

• The end of the QRS is not precisely at the same point as the beginning, so there is a normal ST segment, especially in the transverse plane.

Transverse Plane

 The end of the T loop is back to the E point

Normal Frontal Plane

Normal Transverse Plane

Normal Sagittal Plane

Deriving Scalar From Vector

Scalar Y Lead From Vector

Scalar X Lead From Vector

(A) Derivation of the Orthogonal lead X from the Transverse Plane QRS loop

Scalar Z Lead From Vector

(B) Derivation of the Orthogonal lead Z from the Transverse Plane QRS loop

Correlation of Chest Leads and VCG Transverse Plane

Abnormalities

- Hypertrophy
- Conduction abnormalities
- Infarction

Left Ventricular Hypertrophy

Left Ventricular Hypertrophy

Left Ventricular Hypertrophy

Right Ventricular Hypertrophy

Right Ventricular Hypertrophy

Right Ventricular Hypertrophy Type A

TYPE B RIGHT VENTRICULAR HYPERTROPHY

Right Ventricular Hypertrophy Type B

Right Ventricular Hypertrophy Type C

Left Bundle Branch Block

COMPLETE LEFT BUNDLE-BRANCH BLOCK

Left Bundle Branch Block

Right Bundle Branch Block

COMPLETE RIGHT BUNDLE-BRANCH BLOCK

T'

Right Bundle Branch Block

в

Α

Right Bundle Branch Block

Left Anterior Fascicular Block

Wolff-Parkinson-White

Initial forces are posterior

Anterior Infarction

Initial forces are anterior, but 0.02 sec vector is posterior

Anterolateral Infarction

Ρ -90° Transverse R<u>±180</u>° Plane 0° |90° A S -90 P± 180° <u>°</u>A **Right Sagittal** Plane 90° S 1-90° a۷L R<u>±180</u>°, °L **Frontal Plane** 5 90° aVF ш

Initial forces are clockwise in transverse plane

Inferior Infarction

Initial forces are superior for too long, over 0.025 sec, and superior displacement is excessive.

Transverse Plane

Frontal Plane

Inferolateral Infarction

Combination of inferior MI and lateral MI criteria

Inferior Infarction and LAFB

Left Anterior Hemiblock

Left Anterior Hemiblock and Inferior Myocardial Infarction

Posterior Infarction

Initial forces are anterior too long and too far in transverse plane Transverse Plane

Right Sagittal

Plane

LA T

Frontal Plane

RAE

RIGHT ATRIAL ENLARGEMENT

RAE vs LAE

RIGHT ATRIAL ENLARGEMENT

LAE

LEFT ATRIAL ENLARGEMENT

References

- Friedman HH. Diagnostic electrocardiography and vectorcardiography. McGraw-Hill, 1971
- Chou TC, Helm RA, and Kaplan S. Clinical vectorcardiography, 2nd ed. Grune and Stratton, 1974.
- Netter FH. Ciba collection of medical illustrations, Vol 5. Heart. 1978.