Indications and Limitations of Cardiac Imaging Tests

April 1, 2011 Joe M. Moody, Jr, MD UTHSCSA and STVHCS

Cardiology is a very **visual** specialty, despite the importance of auscultation

Clinical Situation Dictates Choice of Imaging Test

- Coronary heart disease
 - Screening and diagnosis (presence of ischemia)
 - Prognosis (severity of ischemia, LV function)
 - Acute coronary syndrome
 - Directing therapy (localization of ischemia, viability)
- Valvular or congenital heart disease
- Myocardial disease, heart failure, cardiopulmonary disease
- Pericardial disease
- Great vessel, arterial disease
- Arrhythmia (slow, fast, ventricular, atrial)

Rule: In **all** medicine, **all** tests are subservient to the clinical setting

Local Expertise Also Affects Choice of Imaging Test

- Availability of technical support
- Expertise and experience of technical personnel
- Availability of equipment
- Expertise and experience of interpreter

Coronary Heart Disease

Circulation. 2002

Physiology: Ischemic Cascade

Supply/demand imbalance
 Diastolic dysfunction (4 sec)
 Systolic dysfunction (6 sec)
 Elevated LV filling pressure
 ECG changes (20 sec)
 Angina (25 sec)

From Sigwart U, et al, <u>Silent Myocardial Ischemia</u> 1984 and Armstrong WF, <u>Prog Cardiov Dis</u> 1997;39:499-522

Time Course of Ischemia

Experimental Ischemia

- Threshold of 10-20% reduction in blood flow impairs wall thickening and 80% reduction results in akinesis
- Decreased wall thickening extends beyond reduced flow ("tethering")
- Clinical Ischemia (complete balloon occlusion)
 - Regional endocardial dysfunction in 19 sec
 - ECG change in 30 sec
 - Chest pain 39 sec
- Clinical Ischemia (stress in region of coronary stenosis)
 - Wall motion abnormality in 30 sec
 - ECG change in 90 sec
- Otto CM. 2nd Ed. 2002. p. 275, 307

Cardiac Imaging Tests in Coronary Disease

- Invasive: Cardiac catheterization (ventriculography, coronary angiography)
- Noninvasive:
 - <u>Electric</u>* "imaging" (<u>ST segment</u> ischemia, arrhythmia)
 - Nuclear* (myocardial perfusion, pump function, viability)
 - <u>Echocardiography</u>* (<u>wall motion</u>, pump function, valve function)
 - Chest X-Ray*
 - CT Scan (coronary anatomy, coronary calcification)
 - MRI (coronary anatomy, ventricular function, myocardial perfusion, viability, valve function)

* = common, high volume use

Imaging is Used When Exercise ECG is not Adequate

- Patients unable to exercise (intermediate or high clinical likelihood of CAD based on age and symptoms)
- <u>ECG not interpretable</u> (LVH, WPW, Paced QRS, LBBB, digoxin therapy, >1mm ST depression)
- <u>Clinical situation demands</u> more information (angiographically intermediate lesions, intermediate Duke treadmill score, changing clinical situation with prior imaging study)

Effect of Symptoms on Risk of CAD

Hurst, 1998, Ch. 45

History of Noninvasive Testing

Master's 2 step

Motorized treadmill ECG

Search for optimized sensitivity and specificity

Myocardial perfusion imaging

Time

Stress echocardiography

Balance of cost and benefit and risk

Coronary calcification

Magnetic resonance imaging

Choice depends on particular clinical question

Types of Stress

- Exercise is most desirable, treadmill in USA
 - Exercise tolerance has prognostic value, and clinical appearance and HR and BP response information are useful
- In patients who can't exercise:
 - <u>Vasodilator</u> for perfusion testing (dipyridamole, adenosine, regadenoson=Lexiscan)
 - <u>Adrenergic</u> for perfusion or wall motion (dobutamine)
- In other special circumstances
 - LBBB, Paced QRS (prefer vasodilator)

Exercise ECG in CAD

- Usefulness:
 - Widely available
 - Optimal type of stress
 - Least expensive procedure
 - Wealth of prognostic information

- Limitations:
 - Less sensitive than most imaging tests
 - False positive results
 - Many patients cannot exercise
 - Many patients have uninterpretable ECG

Exercise Nuclear Myocardial Perfusion Imaging (MPI) in CAD

- Usefulness
 - Widely available
 - Provides prognostic information from exercise
 - Useful in abnormal ECG with ST-T wave abnormalities
 - Very sensitive
 - Wealth of prognostic information

- Limitations
 - Expensive
 - False positive results
 - Many patients cannot exercise

Exercise Echocardiography in CAD

Usefulness

- Provides prognostic information from exercise
- Useful in abnormal ECG with ST-T wave abnormalities
- Very specific
- Adequate prognostic information

Limitations

- Technically demanding, so less widely available
- Expensive
- Difficult to interpret in presence of resting wall motion abnormalities
- Many patients cannot exercise
- May be less sensitive than MPI

Vasodilator Nuclear Myocardial Perfusion Imaging in CAD

- Usefulness
 - Readily available
 - Useful in patients who cannot exercise
 - Useful in patients
 with LBBB and WPW
 - Very sensitive
 - Wealth of prognostic information

- Limitations
 - Expensive
 - False positive results
 - Adverse effects of vasodilating agents (dipyridamole, adenosine)

Vasodilator Echocardiography in CAD

 Infrequently used in USA, reported useful in Europe

Inotropic/Adrenergic Stress Echocardiography (Dobutamine)

- Usefulness
 - Useful in patients who cannot exercise and who have contraindication to vasodilator
 - Very specific, used for positive MPI
 - Adequate prognostic information

- Limitations
 - Expensive
 - Difficult to interpret in presence of resting wall motion abnormalities
 - May be less sensitive than MPI
 - May be less safe than MPI

Summary: Imaging Tests and Usefulness In CAD

Feature	Ex ECG	Ex Nuc	Ex Echo	Vaso Nuc	Ino Echo
Expense	++	++++	+++	++++	+++
Availability	++++	+++	++	+++	+++
Useful in LBBB	-	-	-	+++	-
Unable to exercise	-	_	-	+++	+++
Prognost info	+++	++++	+++	++++	+++
Use in ST-T	-	++++	++++	++++	++++
Specificity	+	++	++++	++	++++
Sensitivity	++	++++	+++	++++	+++
Wheezing	_	-	-	-	++++

Summary: Imaging Tests and Usefulness by Clinical Situation (Thin Ice)

Setting	ECG	Echo	Nuc	CXR	СТ	MRI	Cath
					scan		

Ischemia diagnosis	++++	+++S	++++	-	+	++	++
Ischemia severity	++++	+++S	++++	-	-	++	++
MI diagnosis	++++	+++	+++	-	-	-	+++
MI prognosis	++	+++	+++	+	-	-	++++
Viability	+	++++S	++++	-	-	+++	+++
Valve/cong . disease	+	++++	+	+	-	+++	+++
Arrhythmia	++++	+	+	-	+	+	+
CHF	+++	++++	++	++		++	++++

Interpreting Noninvasive Reports

- Look at both the stress information and the imaging and electrical information
- Categorize as normal, abnormal with ischemia, abnormal without ischemia, and high risk
- Integrate into the clinical context

Choosing the Best Test

- Patient can exercise
 - and ECG is normal: Exercise ECG
 - <u>and ECG is not interpretable</u>: exercise perfusion study or exercise echocardiogram

Depends on the institution

- and LBBB or LVH: vasodilator perfusion study
- <u>Patient cannot exercise</u>: vasodilator perfusion study or dobutamine stress echocardiogram
- Patient with asthma and wheezing: no vasodilator dobutamine stress echo or perfusion study
- <u>Patient with poor echo windows</u> (COPD): may need echo contrast agent, or change to perfusion study
- <u>Patient over 350 pounds</u>: difficult perfusion will be planar, echo also will likely be poor (also, can't do cardiac catheterization!)

Stress ECG Testing

Nuclear Perfusion Imaging

Heart Tests – Coronary Disease - 2

- Coronary Artery Calcium (CAC) score
 - Asymptomatic and intermediate risk of CAD (10-20% 10-yr risk)
 - Symptomatic and low risk of CAD (low score has high neg predict value)
- CT Coronary Angiography (lodine +)
 - Anomalous coronary (also cardiac MR)
 - Acute chest pain, intermediate risk, neg Trop
 - Maybe Sx + (intermed prob abn ECG can't exercise – prior equivocal test)
- PET Scan, alternative to Nuc

Coronary Artery Calcium

Fig. 1 - Calcification of the anterior descending artery detected on ultrafast tomography in an asymptomatic man (arrow).

CT Coronary Angiography

Coronary Angiography

Tight LAD stenosis

Total RCA occlusion and recanalization

Cardiac PET Scan

Heart Tests – Coronary Disease – Radiation Exposure

Procedure	# CXRs
Stress echocardiography	0
Cardiac MR Angiography	0
Coronary artery Calcium score	20-40
Coronary angiography (diagnostic)	200-500
Nuclear perfusion imaging	100-500
PET perfusion imaging	100-400
CT coronary angiography	700-2100

Definition of Angina

Table 5. Clinical Classification of Chest Pain

Typical angina (definite)

1) Substernal chest discomfort with a characteristic quality and duration that is 2) provoked by exertion or emotional stress and 3) relieved by rest or NTG.

Atypical angina (probable)

Meets 2 of the above characteristics.

Noncardiac chest pain

Meets one or none of the typical anginal characteristics.

Modified from Diamond, JACC, 1983 (45).

ACC/AHA Clinical Practice Guideline, Chronic Stable Angina, 2002.

Diagnosis: Pretest Probability of Obstructive Disease at Catheterization

Diagnostic testing is appropriate - intermediate pretest probability

Age (y)	Gender	Typical/Definite Angina Pectoris	Atypical/Probable Angina Pectoris	Nonanginal Chest Pain	Asymptomatic	
30–39	Men	Intermediate	Intermediate	Low	Very low	
	Women	Intermediate	Very low	Very low	Very low	
40–49	Men	High	Intermediate	Intermediate	Low	
	Women	Intermediate	Low	Very low	Very low	
50-59	Men	High	Intermediate	Intermediate	Low	
	Women	Intermediate	Intermediate	Low	Very low	
60–69	Men	High	Intermediate	Intermediate	Low	
	Women	High	Intermediate	Intermediate	Low	

*No data exist for patients <30 or >69 years, but it can be assumed that prevalence of CAD increases with age. In a few cases, patients with ages at the extremes of the decades listed may have probabilities slightly outside the high or low range. High indicates >90%; intermediate, 10%–90%; low, <10%; and very low, <5%.

ACC/AHA Guideline Exercise Testing 2002, p. 7.

Stable CAD: Diagnostic Tests

- ECG normal and able to exercise = ETT
- ECG abnl and able to exercise = ETT with imaging (nuc-perfusion or echo-wall motion)
 - Exception: LBBB, use vasodilator
- Unable to exercise = vasodilator or dobutamine stress

Contraindications to Exercise Testing

- MI or UA <48 h
- Uncontrolled ventricular arrhythmia
- Symptomatic severe AS
- HCM (?)
- Decompensated HF
- Acute pulmonary embolism
- Acute aortic dissection
- Acute pericarditis

ACC/AHA Guideline Exercise Testing 2002, p. 5.

Stable CAD: Low Risk Test Results

- ECG result: Low risk Duke treadmill score (≥5)
 - Number of minutes of Bruce protocol
 - Minus 5 times number of mm ST depression
 - Minus 4 times angina score (0=none, 1=some, 2=limiting)
- <u>Nuclear result</u>: normal, or small perfusion defect at rest or stress
- <u>Stress Echo result</u>: Normal wall motion or no change in limited resting wall motion abnormalities with stress
- ACC/AHA Guideline, Stable Angina, 2002

Stable CAD: Strongly Positive (High Risk) Test Results

- Markedly positive result = coronary angio
- <u>ECG result</u>: Significant ST depression at low workload, ST elevation, low BP (Duke treadmill score ≤-11)
- <u>Nuclear result</u>: TID, lung uptake, multizone ischemia, EF<35%
- <u>Stress Echo result</u>: Fall in EF with stress, multizone hypokinesis, EF<35%
Coronary Angiography Indications

- Lifestyle-limiting angina despite medical therapy
- High-risk (markedly positive) stress testing
- Resuscitation from sudden cardiac death
- Documented VT
- Uncertain diagnosis with recurrent hospitalization for chest pain
- Angina and heart failure

ACC/AHA Clinical Practice Guideline, Chronic Stable Angina, 2002.

Stress Myocardial Perfusion Imaging

Courtesy of Dr. Janet Hays, UTHSCSA

lame	
at ID	
lex	MALE
imits	A:SepdualMale
ID	1.17
HR	0.43
SS 0	SRS 0 SDS 0
roc ID	CS CARDIAC TC HI DO
iew ID	SHORT AXIS-STR
ate	10/16/2002 11:29:40
hamber	106ml
Vall	183ml
efect	Omi
xtent	0%
roc ID	TE THALLIUM ECT
iew ID	SHORT AXIS-RST
)ate	10/16/2002 09:30:38
hamber	90ml
Yall	170ml
efect	1ml
xtent	0%
1.000	

Created By SeeMor

Courtesy of Dr. Janet Hays, UTHSCSA Normal

Courtesy of Dr. Janet Hays, UTHSCSA Normal

Courtesy of Dr. Janet Hays, UTHSCSA Normal

Zoom 4 AV

Name	
Pat ID	
Sex	MALE
Limits	A:SepdualMale
TID	1.00
LHR	0.39
SSS 9	SRS 5 SDS 4
Proc ID	CS CARDIAC TC HI DC
View ID	SHORT AXIS_STR
Date	08/19/2002 10:25:58
Chamber	89ml
Wall	152ml
Defect	16ml
Extent	10%
Proc ID	TE THALLIUM ECT
View ID	SHORT AXIS-RST
Date	08/14/2002 09:11:36
Chamber	89ml
Wall	171ml
Defect	13ml
Extent	8%
0	A CON

Abnormal Courtesy of Dr. Janet Hays, UTHSCSA

Created By SeeMor

Courtesy of Dr. Janet Hays, UTHSCSA Abnormal

Courtesy of Dr. Janet Hays, UTHSCSA Abnormal

Abnormal Myocardial Perfusion Image

Inferior fixed defect

Small-moderate size, moderate severity reversible in apical septum

Vertical-Long Axis

Short Axis

Myocardial Perfusion Images

Stress

Rest

Stress

Rest

Stress

Rest

From Industry Advertisement for Technicium Sestamibi (Cardiolite)

Horizontal-Long Axis

From South Texas Veterans' Health Care System

- Age: 67
- Gender: M
- Htn: +
- DM: +
- HLP: -
- Tob: +
- ECG: Normal

 Hx: Employed postal worker with no prior history of heart disease, with sharp left-sided pain lasting 2 seconds at rest

- Age: 67
- Gender: M
- Htn: +
- DM: +
- HLP: -
- Tob: +
- ECG: Normal

 Hx: Employed postal worker with no prior history of heart disease, with sharp left-sided pain lasting 2 seconds at rest

Answer: Treadmill exercise ECG

- Age: 68
- Gender: M
- Htn: +
- DM: -
- HLP: +
- Tob: +
- ECG: T flattening
- Hx: thin patient with significant COPD on home O2, wheezing, with increasing dyspnea and mild chest tightness

- Age: 68
- Gender: M
- Htn: +
- DM: -
- HLP: +
- Tob: +
- ECG: T flattening
- Hx: thin patient with significant COPD on home O2, wheezing, with increasing dyspnea and mild chest tightness

Answer: Adrenergic stress echo (Vasodilator- no)

- Age: 35
- Gender: F
- Htn: +
- DM: -
- HLP:
- Tob:
- ECG: minor T wave flattening

Answer:

 Hx: asymptomatic secretary wishes permission to join an exercise program

- Age: 35
- Gender: F
- Htn: +
- DM: -
- HLP:
- Tob:
- ECG: minor T wave flattening

Answer: No test, reassure, treat hypertension

 Hx: asymptomatic secretary wishes permission to join an exercise program

- Age: 72
- Gender: M
- Htn: +
- DM: -
- HLP: +
- Tob: 0 for 9 yr
- ECG: LBBB

 Hx: patient 9 years post CABG with return of his former chest pain, occurring about twice a week

- Age: 72
- Gender: M
- Htn: +
- DM: -
- HLP: +
- Tob: 0* 9 yr
- ECG: LBBB

 Hx: patient 9 years post CABG with return of his former chest pain, occurring about twice a week

Answer: Vasodilator thallium (dobutamine not good)

- Age: 69
- Gender: F
- Htn: +
- DM: -
- HLP: +
- Tob: +
- ECG: T↓V1-3
- Hx: 3 days of pressure-like discomfort, with SOB and diaphoresis and a 20-minute episode this morning

- Age: 69
- Gender: F
- Htn: +
- DM: -
- HLP: +
- Tob: +
- ECG: $T \downarrow V1-3$

 Hx: 3 days of pressure-like discomfort, with SOB and diaphoresis and a 20-minute episode this morning

Answer: No test, too sick, Wellens', admit

- Age: 46
- Gender: M
- Htn: +
- DM: +
- HLP: +
- Tob: +
- ECG: T flattening
- Hx: computer programmer with dyspnea and edema and chest tightness with walking and sleeping, weight 450.

- Age: 46
- Gender: M
- Htn: +
- DM: +
- HLP: +
- Tob: +
- ECG: T flattening
- Hx: computer programmer with dyspnea and edema and chest tightness with walking and sleeping, weight 450. Vasodilator sestamibi? **Dobutamine echo?** Exercise stress test?
- Answer: No good answer.
- Medical therapy?

- Age: 71
- Gender: F
- Htn: +
- DM: -
- HLP:
- Tob: +
- ECG: normal

 Hx: patient admitted with chest pain and ST depression and mild elevation of Tro-I, also weight loss, pulmonary nodules and cervical adenopathy, 5 years post mastectomy

Answer:

- Age: 71
- Gender: F
- Htn: +
- DM: -
- HLP: •
- Tob: +
- ECG: normal

- Hx: patient admitted with chest pain and ST depression and mild elevation of Tro-I, also weight loss, pulmonary nodules and cervical adenopathy, 5 years post mastectomy
- Answer: Consult Oncology first

- Age: 42
- Gender: F
- Htn: +
- DM: +
- HLP: +
- Tob:
- ECG: PPRWP

 Hx: patient with amputation left great toe for vascular disease, no chest pain, mild dyspnea when upset

- Age: 42
- Gender: F
- Htn: +
- DM: +
- HLP: +
- Tob: -
- ECG: PPRWP

 Hx: patient with amputation left great toe for vascular disease, no chest pain, mild dyspnea when upset

Answer: Vasodilator thallium (DSE OK)

- Age: 72
- Gender: F
- Htn: +
- DM: -
- HLP:
- Tob: -
- ECG: A Fib, LVH

 Hx: patient with chronic shortness of breath, slightly worsening

- Age: 72
- Gender: F
- Htn: +
- DM: -
- HLP:
- Tob:
- ECG: A Fib, LVH

 Hx: patient with chronic shortness of breath, slightly worsening

Answer: Vasodilator thallium (DSE <u>NOT</u> OK)

- Age: 45
- Gender: M
- Htn: +
- DM: -
- HLP: +
- Tob: * 2 yr
- ECG: normal

 Hx: patient with no symptoms, with abnormal cine CT result, worried

- Age: 45
- Gender: M
- Htn: +
- DM: -
- HLP: +
- Tob: none for 2 yr
- ECG: normal
- Answer: Exercise ECG, but difficult decision

 Hx: patient with no symptoms, with abnormal cine CT result, worried

- Age: 59
- Gender: M
- Htn: +
- DM: -
- HLP: +
- Tob: * 2 yr
- ECG: Ant MI

 Hx: patient with refractory chest pain despite optimal medication, S/P CABG 1994, cath 1998 2 grafts down, native disease progression

- Age: 59
- Gender: M
- Htn: +
- DM: -
- HLP: +
- Tob: * 2 yr
- ECG: Ant MI

 Hx: patient with refractory chest pain despite optimal medication, S/P CABG 1994, cath 1998 2 grafts down, native disease progression

Answer: Review cath; if candidate, thallium

- Age: 63
- Gender: M
- Htn: +
- DM: +
- HLP: +
- Tob: * 2 yr
- ECG: LVH, A Fib

 Hx: patient with no chest pain and no prior cardiac history admitted with new onset CHF

- Age: 63
- Gender: M
- Htn: +
- DM: +
- HLP: +
- Tob: * 2 yr
- ECG: LVH, A Fib

 Hx: patient with no chest pain and no prior cardiac history admitted with new onset CHF

Answer: Either Cath first, or viability first

What to do with the Answer?

- Age: 67
- Gender: M
- Htn: +
- DM: +
- HLP: -
- Tob: +
- ECG: Normal

- Hx: Employed postal worker with no prior history of heart disease, with sharp left-sided pain lasting 2 seconds at rest
- Treadmill ECG
 - Normal/normal \rightarrow
 - Abnormal \rightarrow
- Age: 67
- Gender: M
- Htn: +
- DM: +
- HLP: •
- Tob: +
- ECG: Normal

- Hx: Employed postal worker with no prior history of heart disease, with sharp left-sided pain lasting 2 seconds at rest
- Treadmill ECG
 - Normal/normal → reassure
 - Abnormal → imaging study or cath

- Age: 68
- Gender: M
- Htn: +
- DM: -
- HLP: +
- Tob: +
- ECG: T flattening
- Hx: thin patient with significant COPD on home O2, wheezing, with increasing dyspnea and mild chest tightness
- Stress echo
 - Normal \rightarrow
 - Abnormal \rightarrow

- Age: 68
- Gender: M
- Htn: +
- DM: -
- HLP: +
- Tob: +
- ECG: T flattening

- Hx: thin patient with significant COPD on home O2, wheezing, with increasing dyspnea and mild chest tightness
- Stress echo
 - Normal \rightarrow reassure
 - Abnormal → medical management or cath

- Age: 35
- Gender: F
- Htn: +
- DM: -
- HLP:
- Tob: -
- ECG: minor T wave flattening

- Hx: asymptomatic secretary wishes permission to join an exercise program
- Recall, no test needed
- Inappropriate test leads to
 - More inappropriate tests

- Age: 72
- Gender: M
- Htn: +
- DM: -
- HLP: +
- Tob: 0* 9 yr
- ECG: LBBB

- Hx: patient 9 years post CABG with return of his former chest pain, occurring about twice a week
- Vasodilator thallium
 - Normal \rightarrow
 - Abnormal \rightarrow
 - High-risk \rightarrow

- Age: 72
- Gender: M
- Htn: +
- DM: -
- HLP: +
- Tob: 0* 9 yr
- ECG: LBBB

- Hx: patient 9 years post CABG with return of his former chest pain, occurring about twice a week
- Vasodilator thallium
 - Normal \rightarrow reassure, medical therapy
 - Abnormal → medical therapy
 - High-risk \rightarrow cath

- Age: 69
- Gender: F
- Htn: +
- DM: -
- HLP: +
- Tob: +
- ECG: $T \downarrow V1-3$
- Hx: 3 days of pressure-like discomfort, with SOB and diaphoresis and a 20-minute episode this morning
- Recall: no test admit, probably LAD disease, likely cath

- Age: 46
- Gender: M
- Htn: +
- DM: +
- HLP: +
- Tob: +
- ECG: T flattening

- Hx: computer programmer with dyspnea and edema and chest tightness with walking and sleeping, weight 450.
- Treadmill stress test:
 - 3 min
 - HR 160, BP 180
 - Chest tight and SOB
 - Normal ST segment

- Age: 46
- Gender: M
- Htn: +
- DM: +
- HLP: +
- Tob: +
- ECG: T flattening

Answer: medical therapy, not real change in management

- Hx: computer programmer with dyspnea and edema and chest tightness with walking and sleeping, weight 450.
- Treadmill stress test:
 - 3 min
 - HR 160, BP 180
 - Chest tight and SOB
 - Normal ST segment

- Age: 42
- Gender: F
- Htn: +
- DM: +
- HLP: +
- Tob:
- ECG: PPRWP

- Hx: patient with amputation left great toe for vascular disease, no chest pain, mild dyspnea when upset
- Pthall
 - Normal \rightarrow
 - Abnormal \rightarrow
 - High risk \rightarrow

- Age: 42
- Gender: F
- Htn: +
- DM: +
- HLP: +
- Tob:
- ECG: PPRWP

- Hx: patient with amputation left great toe for vascular disease, no chest pain, mild dyspnea when upset
- Pthall
 - Normal \rightarrow reassure
 - Abnormal → cath or medical therapy
 - High risk \rightarrow cath

Last Slide: Hurray!

- Recall the physiology
- Means of assessing ischemia
 - Electrical
 - Perfusion
 - Function (wall motion)

- Means of producing stress
 - Exercise
 - Adrenergic agent
 - Vasodilator
- Integrate into clinical context